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Ethanol and cocaine: Environmental place conditioning, stereotypy,
and synergism in planarians
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a b s t r a c t

More than 90% of individuals who use cocaine also report concurrent ethanol use, but only a few studies,
all conducted with vertebrates, have investigated pharmacodynamic interactions between ethanol and
cocaine. Planaria, a type of flatworm often considered to have the simplest ‘brain,’ is an invertebrate
species especially amenable to the quantification of drug-induced behavioral responses and identifica-
tion of conserved responses. Here, we investigated stereotypical and environmental place conditioning
(EPC) effects of ethanol administered alone and in combination with cocaine. Planarians displayed
concentration-related increases in C-shaped movements following exposure to ethanol (0.01e1%)
(maximal effect: 9.9 � 1.1 C-shapes/5 min at 0.5%) or cocaine (0.1e5 mM) (maximal effect:
42.8 � 4.1 C-shapes/5 min at 5 mM). For combined administration, cocaine (0.1e5 mM) was tested with
submaximal ethanol concentrations (0.01, 0.1%); the observed effect for the combination was enhanced
compared to its predicted effect, indicating synergism for the interaction. The synergy with ethanol was
specific for cocaine, as related experiments revealed that combinations of ethanol and nicotine did not
result in synergy. For EPC experiments, ethanol (0.0001e1%) concentration-dependently increased EPC,
with significant environmental shifts detected at 0.01 and 1%. Cocaine (0.001e1 mM) produced an
inverted U-shaped concentrationeeffect curve, with a significant environmental shift observed at
0.01 mM. For combined exposure, variable cocaine concentrations (0.001e1 mM) were administered with
a statistically ineffective concentration of ethanol (0.0001%). For each concentration of cocaine, the
environmental shift was enhanced by ethanol, with significance detected at 1 mM. Cocaethylene, a
metabolite of cocaine and ethanol, also produced C-shapes and EPC. Lidocaine (0.001e10 mM), an
anesthetic and analog of cocaine, did not produce EPC or C-shaped movements. Evidence from planarians
that ethanol produces place-conditioning effects and motor dysfunction, and interacts synergistically
with cocaine, suggests that aspects of ethanol neuropharmacology are conserved across species.

� 2014 Elsevier Inc. All rights reserved.

Introduction

For cocaine-dependent patients, up to 90% receiving inpatient
treatment and 50% receiving outpatient treatment are also depen-
dent on ethanol (Lacoste, Pedrera-Melgire, Charles-Nicolas, &
Ballon, 2010). Ethanol counters anxiety precipitated by cocaine
withdrawal but also facilitates cocaine craving that increases
relapse rates (Lacoste et al., 2010). Further, promising anti-cocaine
medications, notably modafinil, are often less effective in patients
who simultaneously abuse cocaine and ethanol (Anderson et al.,

2009). Studies conducted in rats and mice indicate that the pres-
ence of ethanol can alter the pharmacological profile of cocaine, and
vice versa (Aston-Jones, Aston-Jones, & Koob, 1984; Busse, Law-
rence, & Riley, 2004, 2005; Masur, Souza-Formigoni, & Pires, 1989;
Sobel & Riley, 1997).

Standard vertebrate assays (e.g., self-administration, drug
discrimination, conditioned place preference [CPP]) provide
invaluable information about relative abuse liability and mecha-
nisms but are less amenable to the rapid, mathematical, repro-
ducible, and cost-effective quantification of the myriad of
drugedrug interactions available to polydrug abusers. Assays
developed in planarians provide an alternative (Raffa & Rawls,
2008). Planarians have a centralized nervous system (cephalic
ganglia and nerve cord processes) and multiple neurotransmitter
systems, including glutamate, dopamine, serotonin, acetylcholine,
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and GABA (Buttarelli, Pellicano, & Pontieri, 2008; Eriksson & Panula,
1994; Nishimura, Kitamura, Taniguchi, & Agata, 2010). Planarians
display mammalian-like behavioral responses, including stereo-
typed movements, spontaneous withdrawal, behavioral sensitiza-
tion, cross-sensitization, and environmental place conditioning
(EPC), during exposure to several classes of abused substances
(Kusayama & Watanabe, 2002; Pagán et al., 2008, 2009; Palladini
et al., 1996; Passarelli et al., 1999; Raffa & Valdez, 2001; Rawls,
Karaca, et al., 2010; Rawls et al., 2011; Rowlands & Pagán, 2008).
Cocaine administration produces motor dysfunction, behavioral
sensitization, and EPC in planarians (Pagán et al., 2013; Ramoz et al.,
2012; Rawls, Patil, Yuvasheva, & Raffa, 2010), but less is known
about the impacts of ethanol on planarians. Here, we investigated
stereotypical and place-conditioning effects of ethanol adminis-
tered alone and in combination with cocaine in planarians through
application of dose-addition analysis, a mathematical approach that
examines interactions between agonist drugs in combination by
comparing the experimentally determined effect for a combination
(i.e., ethanol þ cocaine) with its predicted additive effect (Tallarida,
2011, 2012).

Methods

Animals and chemicals

Planarians (Dugesia Dorotocephala) were purchased from Car-
olina Biological (Burlington, NC, USA) and used within 3 days of
arrival. Ethanol and nicotine hydrogen tartrate salt were purchased
from SigmaeAldrich (St. Louis, MO, USA). Cocaine hydrochloride
and cocaethylene fumarate were generously provided by the Na-
tional Institute on Drug Abuse (NIDA) (Bethesda, MD, USA). Stock
and treatment solutions were prepared daily in tap water con-
taining AmQuel� water conditioner (1 mL AmQuel� per 1 gallon of
water).

Activity experiments

Individual planarians were removed from their home jars and
placed for 5 min into a petri dish (5.5 cm diameter) containing
water, cocaine (0.1,1, 3, 5mM), ethanol (0.01, 0.1, 0.5,1%), or nicotine
(0.1, 1, 3, 5 mM). C-shaped movements, previously defined as ste-
reotypical movements, were quantified over the 5-min interval by a
trained observer with a stopwatch who was blinded to drug treat-
ment (Rawls, Karaca, et al., 2010; Rawls et al., 2011). The response
was recorded each time the planarian made a C-shaped behavior
and then relaxed, and this sequence translated to one individual
C-shape. The duration of individual C-shapes was not quantified.
Quantifying the frequency of a specific in vivo response is also
common practice in rodent models, such as the quantification of
withdrawal signs in physically dependent animals (e.g., wet-dog
shakes, escape behavior, teeth chattering, eye blinking). Prior
work has demonstrated that C-shaped movements displayed by
planarians are not caused by changes in the pH or osmolarity of the
solution (Raffa, Finno, Tallarida, & Rawls, 2010). Drug concentrations
were based on prior planarian studies (Pagán et al., 2013; Rawls,
Karaca, et al., 2010; Rawls, Patil, et al., 2010). Concentration-
response data were analyzed using dose-addition analysis, which
is best described in terms of 2 agonist drugs with overtly similar
effects, i.e., each capable of producing stereotypical activity
(Tallarida & Raffa, 2010). The expected effect of the combination
(cocaine, ethanol) was calculated from individual concentration-
response data and compared with the observed effect of the com-
bination (Tallarida, 2012). The difference between the observed and
expected effect is the basis for assessing synergism. For comparative
purposes, ethanol was tested in combination with nicotine.

EPC experiments

Because planarians display a natural preference for a dark
environment, or aversion from the light, we used a biased, coun-
terbalanced conditioning design to assess ethanol or cocaine con-
ditioning effects (Ramoz et al., 2012). Dark and “ambient” light
environments were created by covering half (top and bottom) of a
petri dish containing water with black paper. Individual planarians
were placed at the midline of the dish and given free access to both
the light and dark sides of the dish. The time spent in the non-
preferred, or more aversive, setting (light) over a 5-min interval
was determined (pre-test). Planarians were conditionedwith either
ethanol (0, 0.0001, 0.001, 0.01, 1%) or cocaine (0, 0.001, 0.01, 0.1,
1 mM) for 30 min in the non-preferred environment. Immediately
following conditioning, planarians were placed at the midline of a
petri dish containing water and allowed free access to the light and
dark sides of the dish for 5min. The time spent in the non-preferred
environment was again determined (post-test), and the difference
in time spent in the drug-paired environment (post-test minus pre-
test times) was determined to assess effects of drug conditioning.
For combination experiments, each concentration of cocaine (0,
0.001, 0.01, 0.1, 1 mM) was tested in the presence of a statistically
ineffective concentration of ethanol (0.0001%). Separate experi-
ments tested the effects of cocaethylene, a metabolite of cocaine
and alcohol, on EPC (0, 0.001, 0.01, 1, 100 mM) and C-shapes (0, 100,
250, 750, 1000, 3000 mM), and the effects of lidocaine (0, 0.01, 0.1, 1,
10 mM), an anesthetic and structural analog of cocaine, on EPC.

Statistical analysis

Comparisons of group means (�SEM) for experimental sets
involving individual drugs were evaluated by a 1-way ANOVA, and
in cases of significance, followed by Dunnett’s test to identify dif-
ferences between individual groups. Combination data were
analyzed by either dose-addition analysis (Tallarida, 2012) that in-
corporates a Student’s t test to compare expected and observed
responses or a 2-way ANOVA followed by Bonferroni’s test to
identify individual group differences. Values of p < 0.05 were
considered statistically significant.

Results

Effects of cocaine and ethanol on planarian C-shaped movements

Consistent with normal behavior, planarians tested in water did
not display paroxysms or C-shaped movements. In contrast, pla-
narians exposed to cocaine or ethanol displayed recurrent C-shapes
(representative photographs shown in Fig. 1 for exposure to 5 mM
cocaine). The onset of C-shapes during cocaine exposure was rapid,
beginning within 10 s following exposure. The duration of each
individual C-shaped movement was approximately 1 s. For quan-
tification, cocaine produced a concentration-dependent increase in
C-shapes [F(3,28) ¼ 43.00, p < 0.0001] (1-way ANOVA), with the
5 mM concentration producing the greatest effect (42.75 � 4.11
movements) (Fig. 2A). Ethanol also produced C-shapes
[F(3,28) ¼ 12.47, p < 0.0001] (1-way ANOVA), with a concentration
of 1% producing the maximal effect (8.75 � 0.98 movements)
(Fig. 2A).

Results with the individual agents suggested that an appropriate
testing paradigm for combination studies was one in which fixed
concentrations of ethanol were paired with variable concentrations
of cocaine (Tallarida, 2012). Thus, from the individual concen-
trationeeffect curves, each ethanol concentration was converted to
its effective equivalent of cocaine concentration, thereby enabling
the total concentration of each combination to be expressed as
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cocaine concentration þ effective equivalent (Tallarida, 2012;
Tallarida & Raffa, 2010). In that regard, 2 fixed concentrations of
ethanol (0.01, 0.1%) were tested with increasing concentrations of
cocaine (0.1, 0.5, 1, 2, 3, 4, 5 mM) and the results are presented in
Fig. 2B and C. The expected effect of each combination was calcu-
lated mathematically prior to experimental testing. For illustrative
purposes, an ethanol concentration of 0.01% is equally effective as a
cocaine concentration of 0.106 (i.e., the identical C-shaped response
is produced by either 0.01% alcohol or 0.106 mM cocaine). Thus, a
combination of 0.01% alcohol and 1 mM cocaine is actually equiv-
alent to a cocaine concentration of 0.106 þ 1 ¼ 1.106, yielding an
expected effect of 10.24 C-shapes as determined from the cocaine-
concentration response curve (Fig. 2B). The observed effect for the
combination (0.01% ethanol, 1 mM cocaine) was 19.125 � 1.56
C-shapes, a valuewell above the expected effect of 10.24 (Fig. 2B). In
fact, for all 7 combinations involving 0.01% ethanol, the observed

effect was greater than the expected effect (Fig. 2B). Analysis of the
expected and observed responses with a Student’s t test yielded a
p value of 0.003, which is highly indicative of synergism. Applica-
tion of this approach to combinations involving 0.1% ethanol
(Fig. 2C) also revealed differences between observed and expected
effects (p ¼ 0.017), confirming synergy for the ethanolecocaine
interaction.

To determine if the synergy shown for ethanol was specific for
cocaine or extended to another psychoactive substance, a combi-
nation of ethanol and nicotine was analyzed (Fig. 3). Nicotine pro-
duced a concentration-dependent increase in C-shapedmovements
[F(3,28) ¼ 227.6, p < 0.0001] (1-way ANOVA), with 5 mM nicotine
eliciting the greatest effect (37.70 � 0.99 counts) (Fig. 3A). In this
case, the ethanol concentration (0.8%) was fixed and tested in
combination with increasing concentrations of nicotine (1, 2,
4 mM). Analysis of the expected and observed responses, shown in

Fig. 2. Ethanol interacts synergistically with cocaine to produce C-shaped movements in planarians. A) Effects of cocaine or ethanol on C-shaped movements over a 5-min exposure
interval. ***p < 0.001 compared to lowest concentration of cocaine (0.1 mM) or ethanol (0.01%). n ¼ 8 planarians/group. BeC) Fixed concentrations of ethanol (0.01, 1%) were
administered with increasing concentrations of cocaine (0.1, 0.5, 1, 2, 3, 4, 5 mM). C-shaped movements were quantified over a 5-min exposure interval and data were presented as
mean C-shapes þ SEM versus log cocaine dose. n ¼ 8 planarians/group. A Student’s t test comparing the expected and observed responses reveal synergy for the interaction
(B, p ¼ 0.003 and C, p ¼ 0.017).

Fig. 1. Representative photographs of C-shaped movements displayed when planarians were tested in 5 mM cocaine.
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Fig. 3B, with a Student’s paired t test revealed no significant dif-
ference, a finding that is indicative of a simple additive effect
(Fig. 3B).

Effects of cocaine and ethanol on planarian EPC

The majority of drug-naïve planarians spent a greater amount of
time in the dark than in the ambient light environment during the
pre-test (see Table 1). Effects of ethanol and cocaine, administered
alone and in combination, on EPC are presented in Fig. 4. For
ethanol (Fig. 4A), a 1-way ANOVA indicated a significant main effect
in experiments testing the effects of different concentrations of
ethanol on EPC [F(4,35) ¼ 3.78, p ¼ 0.0117]. Two concentrations of
ethanol, 0.01 and 1%, produced significant environmental shifts
relative to the water control (p< 0.05 for 0.01% and p< 0.01 for 1%).
A maximal environmental shift of 139 � 21 s was produced by a
concentration of 1% ethanol. For the effects of cocaine on EPC
(Fig. 4B), a 1-way ANOVA indicated a significant main effect
[F(4,30) ¼ 3.21, p < 0.05]. A concentration of 0.01 mM cocaine
produced the maximal environmental shift (95 � 12 s), which was

significantly greater than the environmental shift induced by water
(34 � 11 s) (p < 0.05). Overall, cocaine produced an inverted
U-shaped concentrationeeffect curve across the concentrations
tested here (Fig. 4B), with weaker and statistically insignificant
environmental shifts detected for concentrations that were both
lower and higher than 0.01 mM cocaine. For combinations, a fixed
concentration of ethanol (0.0001%) that was statistically ineffective
when given by itself was administered concurrently with graded
concentrations of cocaine (Fig. 4C). For these experiments (Fig. 4C),
a 2-way ANOVA revealed a significant effect of ethanol
[F(1,70) ¼ 9.39, p < 0.01]. Bonferroni analysis indicated that the
effect produced by the highest concentration of cocaine (1 mM) was
significantly enhanced in the presence of 0.0001% ethanol
(p < 0.05) (Fig. 4C). Although effects of each of the other concen-
trations of cocaine were enhanced in the presence of 0.0001%
ethanol, none of the effects reached statistical significance
(p > 0.05).

Effects of cocaethylene on planarian C-shaped movements and EPC

Effects of cocaethylene on C-shaped movements and EPC are
presented in Fig. 5. Cocaethylene produced a concentration-
dependent increase in C-shapes [F(5,42) ¼ 173, p < 0.0001]
(1-way ANOVA) (Fig. 5A). Post hoc analysis revealed that the highest
concentrations of cocaethylene produced significant C-shapes
compared to the lowest tested concentration (i.e.,
2.12 � 0.35 C-shapes), with 750 mM (7.37 � 0.80 movements,
p < 0.01), 1000 mM (12.5 � 1.83 movements, p < 0.001), and
3000 mM (38.49 � 1.45 movements, p < 0.001) all producing sig-
nificant enhancement of C-shaped movements. For EPC experi-
ments (Fig. 5B), a 1-way ANOVA indicated a significant main effect
[F(4,34) ¼ 3.09, p < 0.05]. Two concentrations of cocaethylene, 0.01
and 1 mM, produced significant environmental shifts relative to
water control (p < 0.05). A maximal environmental shift of
106 � 19 s was produced by a concentration of 1 mM cocaethylene.

Fig. 3. A combination of ethanol and nicotine displays a simple additive effect against C-shaped movements. A) Effects of nicotine on C-shaped movements over a 5-min exposure
interval. ***p < 0.001 compared to the lowest concentration (0.1 mM) of nicotine. n ¼ 8 planarians/group. B) A fixed concentration (0.8%) of ethanol was administered with
increasing concentrations of nicotine (1, 2, 4 mM). C-shaped movements were quantified over a 5-min exposure interval and data were presented as mean C-shapes þ SEM versus
log nicotine dose. n ¼ 8 planarians/group. A Student’s t test comparing the expected and observed responses revealed a simple additive effect for the interaction (p > 0.05).

Table 1
Drug-naïve planarians spend a greater percentage of time in a dark environmentQ4 .

Experimental set Figure Total#
planarians

# planarians
with initial
dark preference

% planarians
that initially
prefer dark

Ethanol 4A 40 39 98
Cocaine 4B 35 33 94
Cocaine þ Ethanol 4C 80 76 95
Cocaethylene 5B 39 39 100
Lidocaine 6 40 40 100

For each set of CPP experiments, data regarding the initial time spent in the dark
versus light environments during the pre-test is presented below. The environment
in which planarians spent the least amount of time was designated as the non-
preferred environment. Since a biased CPP design was used, drug conditioning
always occurred in the non-preferred environment.
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Effects of lidocaine on planarian C-shaped movements and EPC

Effects of lidocaine on EPC are presented in Fig. 6. A 1-way
ANOVA conducted on the data set did not reveal a significant
main effect [F(4,35) ¼ 0.08369, p > 0.05], thus indicating that
lidocaine, at the concentrations tested here, did not produce sig-
nificant effects in the planarian EPC assay.

Discussion

We tested the hypothesis that planarians, the simplest animal
to possess a body plan common to all vertebrates and most
invertebrates, would display motor dysfunction and place-
conditioning effects when exposed to ethanol alone and in

combination with cocaine. That is, indeed, what we found.
Planarians exposed to ethanol by itself displayed concentration-
dependent increases in C-shaped movements and EPC. For combi-
nation experiments that quantified C-shaped movements, ethanol
interacted synergistically with cocaine (Tallarida, 2012). The syn-
ergism was specific to cocaine as similar experiments testing
combinations of ethanol and nicotine revealed only a simply ad-
ditive interaction. Synergy between ethanol and cocaine in pla-
narians, or other invertebrates for that matter, has not been
previously reported to our knowledge, but it should be noted that
Lmo genes regulate behavioral responses to ethanol and cocaine in
Drosophila melanogaster and the mouse (Lasek, Giorgetti, Berger,
Tayor, & Heberlein, 2011). Thus, in planarians, it is possible that
Lmo genes contributed to the stereotypical and rewarding effects

Fig. 4. Ethanol and cocaine both produce EPC in planarians, and a combination of ethanol and cocaine produces enhanced EPC. Data are presented as the mean difference in time
spent on the drug-paired side(s) þ SEM for ethanol (A) and cocaine (B). n ¼ 7e8 planarians per group. *p < 0.05 or **p < 0.01 compared to respective water controls. C) Data are
presented as percentage of water control environmental shift (i.e., this environmental shift is the difference in time spent on the drug-paired side) þ SEM. n ¼ 7e8 planarians per
group except for the water control (n ¼ 13). *p < 0.05 compared to the group treated with cocaine by itself.

Fig. 5. Cocaethylene produces C-shaped movements and EPC in planarians. A) Effects of cocaethylene on C-shaped movements over a 5-min exposure interval. **p < 0.01 or
***p < 0.001 compared to the lowest concentration of cocaethylene (0.1 mM). n ¼ 8 planarians/group. B) Effects of cocaethylene on EPC. Data are presented as the mean difference in
time spent on the drug-paired side (s) þ SEM. n ¼ 7e8 planarians per group. *p < 0.05 compared to the water control.
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produced by ethanol and cocaine as well as the synergy that was
demonstrated for the combination. Interactions between ethanol
and cocaine have been studied more extensively in rats and mice.
For rat experiments, synergy has been demonstrated for ethanol
and cocaine interactions in a taste-aversion learning assay whereas
an additive effect was demonstrated on schedule-controlled
responding (Sobel & Riley, 1997). Rotarod performance in both
rats and mice was investigated using a design inwhich active doses
of ethanol were administered with inactive doses of cocaine (Rech,
Vomachka, & Rickert, 1978). The combinations disrupted rotarod
performance of rats above levels observed with ethanol alone,
whereas the combination did not enhance or suppress effects of
ethanol alone in mice. Another study measured activity levels of
mice following administration of a stimulant dose of ethanol by
itself and in combination with different doses of cocaine (Masur
et al., 1989). Both compounds increased activity when adminis-
tered alone, and the combination resulted in additive responses.

Ethanol and cocaine both produced C-shaped movements in the
present experiments, a finding consistent with prior evidence that
acute exposure to psychoactive drugs such as cocaine, nicotine,
methamphetamine, and the ‘bath salt’ constituentmephedrone (i.e.,
4-methylmethcathinone) also elicit C-shapes in planarians (Pagán
et al., 2013; Ramoz et al., 2012; Rawls, Karaca, et al., 2010; Rawls
et al., 2011). Ethanol was less efficacious than cocaine; a maximum
of about 9 and 43 C-shapes were detected during exposure to
ethanol and cocaine, respectively. The disparity in efficacies is un-
clear, but one possibility is that ethanol displays mixed stimulant
and depressant effects, with the latter action serving to dampen the
number of C-shaped movements. Although rats also display
increased stereotypical activity following exposure to cocaine,
ethanol, and other psychoactive drugs (Devenport, Merriman, &
Devenport, 1983; Koob, 1992), the relationship between C-shaped
movements in planarians and stereotyped movements in rodents is
unclear despite manifestation of both behavioral phenomena after
presentation of a common drug-induced stimulus. C-shaped

movements have been described as muscle contractions that occur
following exposure to cholinergic agonists (Nishimura et al., 2010)
and as “seizure-like activity” based on evidence that proconvulsant
produce stereotyped movements that are suppressed by adminis-
tration of antiepileptic drugs (Raffa et al., 2010; Ramakrishnan &
Desaer, 2011). Given that cocaine and ethanol can produce toxicity
in humans and rats, particularly at high doses (Zagnoni & Albano,
2002), it cannot be discounted that proconvulsant or toxic actions
of cocaine, ethanol, or both, contributed to the production of
C-shaped movements. For cocaine, there was also significant
disparity between concentrations that produced EPC and C-shapes.
EPC was elicited by nanomolar concentrations of cocaine, with the
environmental shift peaking at 0.01 mM, whereas millimolar con-
centrations were necessary to elicit C-shapes. No such disparity was
evident for ethanol, as EPC and C-shapes were produced by over-
lapping concentrations, an outcome perhaps related to ethanol’s
only modest ability to induce C-shapes. Motility was not tested in
thepresent study, although it couldbepredicted that concentrations
of cocaine and ethanol that produce the most robust stereotyped
movements would cause the most pronounced reduction in
motility, and vice versa (Baker, Deats, Boor, Pruitt, & Pagán, 2011;
Rawls et al., 2011).

Ethanol and cocaine both produced EPC in planarians, a finding
consistent with evidence that drugs of abuse, such as nicotine and
mephedrone, and natural rewards, such as common table sugar,
also produce EPC in planarians (Ramoz et al., 2012; Rawls et al.,
2011; Zhang, Tallarida, Raffa, & Rawls, 2013). The efficacies of
ethanol and cocaine, and the shapes of their concentration-
response curves, were different. Ethanol was more efficacious,
producing a maximal environmental shift of nearly 150 s compared
to approximately a 100 s shift for cocaine. Ethanol was also more
efficacious than sucrose, which was previously shown to produce a
maximal environmental shift of about 110 s (Zhang et al., 2013). The
shapes of the concentration curves for ethanol and cocaine also
differed. Cocaine produced an inverted U-shaped concentration-
response curve in which a concentration of 0.01 mM produced the
maximal environmental shift with lower and higher concentrations
producing weaker shifts. Comparable inverted U-shaped dos-
eeresponse curves for cocaine have been observed with rats (i.e.,
10 mg/kg producing maximal EPC with doses of 3 and 30 mg/kg
producing weaker responses) (Zakharova, Miller, Unterwald, Wade,
& Izenwasser, 2009). Cocaine-induced EPC in rats can be both
reduced and strengthened by ethanol in a manner that is depen-
dent on cocaine dose and thought to be related to whether or not
the dose of cocaine is rewarding or aversive (Busse et al., 2004;
Busse & Riley, 2002). Rat studies indicate that a fixed, ineffective
dose of ethanol reduces EPC produced by higher doses of cocaine
(i.e., 30 and 40 mg/kg). However, when the same dose of ethanol is
administered in combination with lower, ineffective doses of
cocaine (2.5 and 5 mg/kg), rats display EPC (Busse et al., 2004). In
planarians, a somewhat different profile was observedwhen a fixed
concentration of ethanol that did not produce significant EPC by
itself was administered with variable concentrations of cocaine.
Ethanol did not reduce environmental shifts induced by any of the
cocaine concentrations. However, when ethanol was administered
with the highest concentration of cocaine (which did not produce
an environmental shift by itself), planarians did display significant
EPC. Thus, while modest overall effects of cocaine and ethanol
combinations on planarian EPC were observed, our results in this
species are suggestive of a slight enhancement rather than inhibi-
tion of EPC.

A liability of the planarian assay is that it is not well suited for
identifying pharmacokinetic mechanisms underlying synergistic
interactions, including the one identified here for cocaine and
ethanol. It is conceivable that planarians contain enzymes that

Fig. 6. Lidocaine does not produce EPC in planarians. Data are presented as the mean
difference in time spent on the drug-paired side(s) þ SEM. n ¼ 8 planarians per group.
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convert cocaine and ethanol into cocaethylene, a behaviorally active
metabolite that targets mammalian neural reward pathways and
contributes to the locomotor, reinforcing, and addictive properties
of the combination (Katz, Terry, & Witkin, 1992; Schechter, 1995;
Sobel & Riley, 1999). Fruit flies (D. melanogaster) express a cellular
mechanism through which cocaine can be converted to coca-
ethylene, possibly through ethanol-sensitive enzymes (Torres &
Horowitz, 1999). Along these lines, we investigated behavioral
effects of cocaethylene in planarians, and found that themetabolite,
similar to cocaine and ethanol, produced C-shapes and EPC
following its exogenous application. Similar to cocaine, coca-
ethylene produced rewarding effects and motor dysfunction that
were discernible by concentration, with lower concentrations
producing EPC and higher concentrations producing C-shapes. As
more information emerges about the genome of planarians, future
studies are planned to better link behavioral, neurochemical, and
cellular data to determine if endogenous cocaethylene contributes
to the pharmacological effects of cocaine and ethanol in planarians.

The relationship between EPC responses in planarians and
mammals is not yet clear. It is evident that drugs of abuse from
different classes, as well as natural reinforcers such as table sugar,
can produce EPC in planarians and mammals. From the conven-
tional point of view, the EPC assay is typically used to assess the
rewarding effects of a substance, especially in the context in which
the rewarding effect is associated with the environment (Napier,
Herrold, & de Wit, 2013). For planarians, it is unclear whether the
rewarding effects of addictive substances such as ethanol and
cocaine are responsible for the EPC. Our experiments revealed that
lidocaine, an analog of cocaine that produces anesthetic effects but
not rewarding effects, did not produce EPC. While the effects of
cocaine and lidocaine on EPC in planarians were separable, a caveat
is that lidocainemay not be biologically active in this organism since
there is no existing evidence that lidocaine acts on Naþ channels in
planarians. Nonetheless, prior pharmacological evidence does
suggest that planarians express functional Naþ channels. For
example, carbamazepine, a clinically approved antiepileptic drug,
inhibits convulsant-like effects in planarians (Ramakrishnan &
Desaer, 2011), and it is widely accepted that the anti-seizure prop-
erties of carbamazepine are largely due to its inhibition of voltage-
gated sodium channels (McLean & Macdonald, 1986).

It is generally accepted that enhanced dopamine transmission
underlies the rewarding effects of addictive substances, and it has
been shown that sucrose produces EPC in planarians that is
inhibited by antagonists of dopamine receptors (Zhang et al., 2013).
However, in regard to ethanol and table sugar, it is possible that
taste contributes to EPC. The digestive system of planarians is
comprised of a mouth and gastrovascular cavity connected by a
pharynx, and their natural diet consists of segmented worms and
dead fish. It is known that chemoreceptors concentrated in the
auricles at the side of the planarian head respond to gustatory and
olfactory stimuli and that olfactory/taste signals received in the
head region are conveyed in the main lobes of the brain (Okamoto,
Takeuchi, & Agata, 2005). Future studies will be aimed at linking
reward and appetite pathways in planarians to the pharmacological
effects of ethanol. It should also be mentioned that anxiolytic ef-
fects of rewarding substances could contribute to EPC displayed by
planarians.

In summary, ethanol produced place-conditioning and motor
effects in planarians and interacted synergistically with cocaine.
Our results suggest that certain elements of ethanol’s neurophar-
macological profile are conserved across species (Raffa & Rawls,
2008) and demonstrate the applicability of planarian assays in
the quantification of polydrug interactions, particularly when used
with dose-addition analysis (Tallarida, 2012).
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