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Levamisole is estimated by the Drug Enforcement Agency (DEA) to be present in about 80% of cocaine
seized in the United States and linked to debilitating, and sometimes fatal, immunologic effects in
cocaine abusers. One explanation for the addition of levamisole to cocaine is that it increases the amount
of product and enhances profits. An alternative possibility, and one investigated here, is that levamisole
alters cocaine’s action in vivo. We specifically investigated effects of levamisole on cocaine’s stereotypical
and place-conditioning effects in an established invertebrate (planarian) assay. Acute exposure to le-
vamisole or cocaine produced concentration-dependent increases in stereotyped movements. For
combined administration of the two agents, isobolographic analysis revealed that the observed stereo-
typical response was enhanced relative to the predicted effect, indicating synergism for the interaction.
In conditioned place preference (CPP) experiments, cocaine produced a significant preference shift; in
contrast, levamisole was ineffective at all concentrations tested. For combination experiments, a sub-
maximal concentration of cocaine produced CPP that was enhanced by inactive concentrations of le-
vamisole, indicating synergism. The present results provide the first experimental evidence that
levamisole enhances cocaine’s action in vivo. Most important is the identification of synergism for the
levamisole/cocaine interaction, which now requires further study in mammals.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

An old drug called levamisole (Ergamisol) that was once used to
treat parasitic worm infections in humans is exacerbating health
risks for an estimated 2 million cocaine users in the United States
(Auffenberg et al., 2013). The news media (e.g. Time Magazine),
scientific publications, and government agencies are alerting the
general public, health officials, and physicians about potentially
life-threatening effects of cocaine laced with levamisole (Zhu et al.,
2009; Chang et al., 2010; Ullrich et al., 2011). An example of such a
warning is the public alert issued in September of 2009 by the U.S.
Department of Health and Human Services Substance Abuse and
Mental Health Services Administration warning that “a dangerous
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substance, levamisole, is showing up with increasing frequency in
illicit cocaine powder and crack cocaine and can lead to a severe
reduction in the number of white blood cells, a problem that is
called agranulocytosis”. The Drug Enforcement Agency (DEA) esti-
mates that about 80% of the cocaine seized in the US is laced with
levamisole (Wolford et al., 2012). DEA data from 2009 also noted an
average concentration of approximately 10% levamisole detected in
cocaine, and Buchanan et al. (2010) demonstrated the presence of
levamisole (as high as 10%) in a patient’s crack cocaine pipe, thus
confirming levamisole as a cocaine adulterant. Speculation about
the addition of LVM to cocaine centers on two hypotheses. One is
that LVM increases the amount of ‘product’which increases profits.
LVM is cheap, has similar physicochemical properties to cocaine,
and is easily accessible as a veterinary pharmaceutical in regions in
which the laced cocaine originates.

A second hypothesis is that levamisole is added to cocaine to
modify the pharmacological properties of cocaine. To probe the
latter possibility, we used an established planarian assay to deter-
mine if levamisole affects cocaine’s action in vivo. Planarians are
aquatic flatworms with a centralized nervous system often
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Fig. 1. Cocaine and levamisole produce stereotyped movements in planarians. Pla-
narians were exposed to different concentrations of cocaine (1A) or levamisole (1B) for
5 min. The number of C-shape movements over the 5-min exposure interval were
determined and presented as mean stereotypy counts �S.E.M. N ¼ 8 planarians/group.
***p < 0.001 or *p < 0.05 compared to the respective water control in cocaine (1A) or
levamisole (1B) experiments.
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considered to be the simplest ‘brain’ (Raffa and Rawls, 2008;
Buttarelli et al., 2008). Planarians contain neurotransmitter sys-
tems, including glutamate, dopamine, serotonin, acetylcholine, and
GABA (Eriksson and Panula, 1994; Vyas et al., 2011; Nishimura et al.,
2010), and to a limited extent display mammalian-equivalent
behavioral responses (stereotypical activity, abstinence-related
withdrawal, behavioral sensitization, cross-sensitization, and
place conditioning) following exposure to addictive substances
(Palladini et al., 1996; Pagán et al., 2008, 2009, 2013; Rowlands and
Pagán, 2008; Rawls et al., 2010, 2011; Ramoz et al., 2012). The
present experiments characterized levamisole and cocaine in-
teractions using two behavioral endpoints. One was stereotypical
activity, defined as the number of C-shape movements across a
defined time interval (Passarelli et al., 1999; Rawls et al., 2011). The
other was conditioned place preference (CPP), an assay in which
planarians exposed to a distinct environment in the presence of a
positively reinforcing substance will later show preference for that
same environment when given a choice (Zhang et al., 2013; Ramoz
et al., 2012). Drug combination analysis employing isobolographic
theory was used to quantify levamisoleecocaine interactions
(Tallarida, 2011, 2012). The isobolographic method is derived from
the principle of dose equivalence and is the standard pharmaco-
logical approach to analyze observed combination dose effects for
comparison with expected, or additive, effects. Its aim is to assess
synergistic and/or additive interactions between compounds
administered simultaneously (Tallarida, 2011, 2012).
2. Experimental procedures

2.1. Subjects and drugs

Planarians (Dugesia dorotocephala) were purchased from Car-
olina Biological Supply (Burlington, NC, USA). Upon arrival in the
laboratory, planarians were maintained in the aqueous solution
provided by Carolina Biological Supply, acclimated to room tem-
perature (21 �C), and tested within 3 days of receipt. (�)-Cocaine
hydrochloridewas generously provided by the National Institute on
Drug Abuse (Bethesda, MD, USA). Levamisole hydrochloride was
purchased from SigmaeAldrich (St. Louis, MO, USA). Stock solu-
tions of each drug were prepared daily in a vehicle of tap water
containing AmQuel� water conditioner. Treatment solutions were
diluted with tap water containing AmQuel� water conditioner.
Concentrations of cocainewere based on prior behavioral outcomes
in planarians (Owaisat et al., 2012; Pagán et al., 2013; Rawls et al.,
2010), and levamisole concentrations were determined empiri-
cally using previously reported Ki values as a guide (Anagnostou
et al., 1996).
2.2. Behavioral experiments

2.2.1. Stereotypical activity
Individual planarians were placed randomly into a transparent

petri dish (5.5 cm diameter) containing a solution of cocaine (0,
0.1, 1, 3, 5 mM) or levamisole (0, 0.1, 0.3, 0.75, 1 mM) for 5 min and
stereotyped movements were quantified (Ramoz et al., 2012). The
concentration-effect data for each individual drug was used to
determine the constantepotency ratio of the two drugs at a
specified effect level (i.e. equi-effective doses of each drug). From
this value the isobole, which indicates additivity for the predicted
effect of the combination, was constructed and used to determine
if the combination was additive, sub-additive or synergistic (su-
per-additive) (Tallarida, 2011, 2012). Combination doses used in
actual experiments were determined based on individual drug
potencies.
2.2.2. Conditioned place preference (CPP)
CPP) experiments were divided into 3 different phases: 1) pre-

conditioning (pre-test); 2) conditioning; and 3) post-conditioning
(post-test). Because planarians display a natural preference for a
dark environment (Raffa et al., 2003), we used a biased, counter-
balanced conditioning design to assess cocaine and levamisole
preference (Ramoz et al., 2012). In a biased design, the preference of
each individual animal for a particular environment is determined
prior to conditioning by placing the animal in the apparatus, and
then by assessing the amount of time the animal spends in each
compartment. The least-preferred compartment for each animal is
then assigned to be the drug-paired compartment. For the pre-
conditioning phase, dark and “ambient” light environments were
created by covering half (both the top and bottom) of a petri dish
containing water with black construction paper. An individual
planarian was then placed at the midline of the dish and given free
access to roam both the light and dark environments of the dish.
The time spent in the least-preferred setting over a 5-min interval
was then determined. This value is called the pre-test time. The
least-preferred environment, as determined during pre-
conditioning, is designated as the environment in which drug
conditioning occurs and is therefore called the ‘drug-paired’ envi-
ronment. For conditioning, planarians were exposed to either
cocaine (0, 0.001, 0.01, 0.1, 1, 100 mM) or levamisole (0, 0.01, 0.1,
1 mM) for 30 min in the least-preferred (drug-paired) environment.
For the situation inwhich the ‘drug-paired’ environment is ambient
light, the petri dish is uncovered during the conditioning phase to
allow exposure to the light. For the opposite situation in which the
drug-paired environment is the dark, the entire petri dish is
covered with black construction paper to enable exposure to a dark
environment. Immediately following conditioning, the post-
conditioning phase was performed in a manner identical to that
described for pre-conditioning. Planarians were placed at the
midline of a petri dish containing water and allowed free access to
the light and dark sides of the dish for 5 min. Time spent in the
drug-paired side (the original least-preferred environment) was
determined (post-test), and a preference score was calculated as
the difference between the post-test and pre-test times. A similar
protocol has been used by our laboratory to demonstrate that
planarians display CPP to different addictive substances including
designer cathinones, nicotine, and sugar (Rawls et al., 2011; Ramoz



Fig. 2. Cocaine and levamisole interact synergistically to produce stereotyped movements in planarians. Cocaine and levamisole were determined to have a constantepotency ratio
(cocaine:levamisole) of 3.20, with potencies of 2.25 mM for cocaine and 0.703 for levamisole, from the data in Fig. 1. (2A) Four combinations maintaining the constantepotency ratio
of 3.20 (i.e. cocaine concentration (mM)/levamisole concentration (mM): 2.25/0.703; 1.12/0.35; 0.56/0.17; 0.28/0.08) were administered to planarians for 5 min. The number of C-
shape movements were determined over the 5 min exposure interval and presented as mean stereotypy counts � S.E.M. N ¼ 8 planarians/group. (2B) Isobole indicating additivity
for the combination was determined from the constantepotency ratio and presented as the diagonal line with intercepts 2.25 þ/0.097 (horizontal) and 0.703 þ/0.125 (vertical). The
observed dose-combination point (0.598 mM for cocaine, 0.186 mM for levamisole) determined from Fig. 2A data lies significantly below the isobole, thereby indicating synergism
for the combination.

Fig. 3. Cocaine, but not levamisole, produces CPP in planarians. Data are presented as
the mean preference score (s) þ S.E.M. (difference between post-conditioning and pre-
conditioning times) from planarians in which cocaine (3A) or levamisole (3B) was
paired with ambient light during the conditioning phase. N ¼ 8e12 planarians/group.
*p < 0.05 compared to water control.
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et al., 2012; Zhang et al., 2013). Cocaine produced significant CPP
whereas levamisole did not (see Results). Thus, for combined
administration, inactive concentrations (0.01, 1 mM) of levamisole
were tested in combination with graded concentrations (0.001, 0.1,
100 mM) of cocaine.

2.3. Data analysis

Comparisons of group means (�S.E.M.) for experiments
involving individual drugs were evaluated by one-way ANOVA, and
in cases of significance, followed by Dunnett’s test. For combined
administration, isobolographic analysis, plus two-way ANOVA fol-
lowed by Bonferroni’s test, was used. Values of p < 0.05 were
considered statistically significant.

3. Results

3.1. Combination of cocaine and levamisole elicits synergistic
stereotypical activity

Effects of acute exposure to cocaine or levamisole on stereo-
typed movements are presented in Fig. 1. For cocaine (Fig. 1A), one-
way ANOVA revealed a significant main effect [F(4, 35) ¼ 58.12,
p < 0.0001]. Post-hoc analysis indicated that 3 and 5 mM cocaine
produced significantly greater stereotypical activity than water-
exposed controls (p < 0.001). The maximal number of stereo-
typed movements (42.75 � 4.11) was produced by 5 mM cocaine.
For levamisole (Fig. 1B), one-way ANOVA revealed a significant
main effect [F(4, 35) ¼ 47.78, p < 0.0001]. Post-hoc analysis indi-
cated that concentrations of 0.3, 0.75 and 1 mM levamisole pro-
duced significantly greater stereotypical activity compared to
water-exposed controls (p < 0.001). The maximal number of ste-
reotyped movements (25.88 � 2.18) was produced by 1 mM
levamisole.

The individual concentration-effect curve of each individual
drug (determined from the data in Fig. 1) allows a determination of
equally effective doses (e.g. effect 20% is inserted into the equation
of each curve and the dose that produces this effect is determined).
Specifically, cocaine gives a concentration of 2.25 mM whereas le-
vamisole gives a concentration of 0.703 mM. These ED20 values for
cocaine and levamisole reveal that the agents have a constant-
potency ratio (cocaine:levamisole) of 3.20 with potencies of
2.25mM for cocaine and 0.703 for levamisole. In other words, these
values are the equi-effective doses of cocaine and levamisole that
produce the same effect level (an effect of 20 stereotyped move-
ments). From those values the isobole, which indicates additivity
for the combination of cocaine and levamisole, was determined and
shown in Fig. 2B as the diagonal line with intercepts 2.25 þ/0.097
(horizontal) and 0.703 þ/0.125 (vertical). Four combinations of
cocaine and levamisole, all of which maintained the constante
potency ratio of 3.20 (i.e. cocaine concentration (mM)/levamisole
concentration (mM): 2.25/0.703; 1.12/0.35; 0.56/0.17; 0.28/0.08),
were tested in actual experiments and their effects on stereotyped
movements are shown in Fig. 2A. As was the case with the indi-
vidual agents (Fig. 1), the constant-potency combinations of
cocaine and levamisole produced concentration-dependent
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increases in stereotyped movements (Fig. 2A). Fig 2B shows the
isobole. This is a plot of all dose combinations (cocaine and le-
vamisole) that are expected to give the specified effect when there
is no interaction. The observed dose combination point (0.598 mM
for cocaine, 0.186 mM for levamisole) that achieved an effect level
of 20 stereotyped movements, however, is below the isobole,
thereby indicating synergism, i.e. the effect is achieved with this
lower dose combination (Tallarida, 2012).

3.2. Levamisole enhances cocaine-induced conditioned place
preference (CPP)

The place conditioning effects of cocaine and levamisole are
presented in Fig. 3. For cocaine (Fig. 3A), one-way ANOVA indicated
a significant main effect on CPP [F(5, 46) ¼ 2.832, p < 0.05]. Con-
ditioning with a concentration of 0.01 mM cocaine produced a
significantly greater preference shift (100 � 15 s) than water con-
trols (40 � 10 s) (p < 0.05). For levamisole (Fig. 3B), a significant
main effect was not indicated by one-way ANOVA [F(3, 28) ¼ 1.271,
p > 0.05].

Using the CPP data obtained for the individual drugs as a guide
(Fig. 3), we combined inactive concentrations of levamisole (0.01,
1 mM) with submaximal (0.001 mM), as well as higher and more
efficacious concentrations (0.1, 100 mM), of cocaine. In the case in
which an inactive concentration of levamisole is administered with
an active concentration of cocaine, the expected effect becomes one
in which the preference shift produced by the combination is
simply equal to the preference shift produced by cocaine alone. The
analysis is then one inwhich the effect of the active drug, cocaine, is
statistically compared before and after the addition of levamisole.
For actual experiments (Fig. 4), two-way ANOVA revealed a sig-
nificant effect of levamisole [F(2, 60) ¼ 3.51, p < 0.05]. Bonferroni
analysis indicated that the preference shift produced by a sub-
maximal concentration of cocaine (0.001 mM) was enhanced in the
presence of levamisole (p < 0.05) (Fig. 4). The shift produced by
cocaine (0.001 mM) alone was 43� 18 s; in the presence of 0.01 and
1 mM the preference shift was 123 � 23 s and 119 � 13 s, respec-
tively. Levamisole did not significantly affect the preference shift
elicited by higher concentrations of cocaine (0.1, 100 mM) (p> 0.05).
Fig. 4. Levamisole enhances cocaine-induced CPP. Data are presented as the mean
preference score (s) þ S.E.M. (difference between post-conditioning and pre-
conditioning times) from planarians in which increasing concentrations of cocaine
(the active agent) were co-administered with water or levamisole (LVM) (the inactive
agent) in the ambient light (non-preferred environment) during the conditioning
phase. N ¼ 8 planarians/group. *p < 0.05 compared to water (LVM [0 mM]) þ cocaine
group.
4. Discussion

The aim of our study was to provide experimental information
about effects of levamisole on cocaine’s action in vivo and that effort
revealed synergism for the cocaine and levamisole interaction. We
demonstrated that two neuropharmacological effects of cocaine,
stereotyped movements and CPP, were enhanced in select cases in
which cocaine was administered in combination with levamisole.
As is often the case when synergism is first detected, we do not yet
know the precise mechanism, but the very detection of synergism
is an important first step in exploring mechanism and impact.
Understanding the pharmacology of a prevalent combination such
as cocaine and levamisole is critical because poly-drug use (e.g.
cocaineþ alcohol, heroinþ cocaine) can increase dangers that each
drug poses by itself andmake it more difficult to identify efficacious
medications to manage dependence, craving, and relapse. An
example of the challenge posed by poly-drug addiction is the
impact of alcohol dependence on the efficacy of modafinil in
treating cocaine dependence (Anderson et al., 2009; Vocci and
Elkashef, 2005). In this case, modafinil treatment reduces cocaine
use in subjects that are not dependent on alcohol but, in cocaine
users who are alcohol dependent, modafinil loses its efficacy.

Effects of cocaine on the endpoints studied here (stereotypy and
CPP) are established across different species, including planarians
(Pagán et al., 2013; Rawls et al., 2010). Although effects of levami-
sole on motor and reward systems are not well defined, some of its
biological actions are consistent with an agent that enhances effects
of cocaine through direct or indirect augmentation of monoamine
activity. For example, levamisole inhibits monoamine oxidase
(MAO) and activates nicotinic receptors (e.g. a3b4, a3b2), and both
MAO inhibitors and nicotinic agonists enhance cocaine effects and
increase dopamine transmission (Hernando et al., 2012; Levandoski
et al., 2003; Agarwal et al., 1990). Levamisole also elevates levels of
endogenous opioids associated with drug highs and attenuates the
opiate withdrawal syndrome in rats (Spector et al., 1998).
Furthermore, levamisole, when used as adjuvant therapy for colon
cancer, has been reported to cause mood-elevating effects (Goldin
et al., 1982). On the basis of those combined data, one explana-
tion for the levamisole synergism with cocaine in activity and CPP
assays is enhanced dopamine activity, perhaps through the simul-
taneous block of dopamine catabolism, or activation of nicotinic
acetylcholine receptors, by levamisole and blockade of dopamine
uptake by cocaine. Pharmacodynamic mechanisms are not the only
potential explanations for the synergy; pharmacokinetic in-
teractions, such as levamisole inhibiting catabolism of cocaine into
inactive metabolites, or a chemical interaction between the two
drugs that leads to enhancement of the pharmacological properties
of cocaine, may have played a role.

When administered by themselves, cocaine and levamisole
increased stereotyped movements. Although drugs possessing
abuse liability often increase stereotypical activity in laboratory
animals (Koob, 1992), the relationship, if any, between stereotyped
movements in planarians, rats and mice is uncertain. Part of the
reason is that stereotypy is broadly defined as a repetitive, ritual-
istic movement and is not uniformly quantified across different
species. For rodents a scoring system is frequently used to quantify
individual stereotypical movements, such as rearing, grooming,
sniffing, and head bobbing (Tanda et al., 2007), and photocell beam
interruptions are used to quantify cumulative stereotyped move-
ments (Rasmussen et al., 2011; Hummel and Unterwald, 2003). For
planarians we quantify stereotypical activity as C-shape move-
ments, which are detected following exposure to different addictive
substances including cocaine, synthetic cathinones, nicotine, and
caffeine (Zhang et al., 2013; Ramoz et al., 2012; Rawls et al., 2010;
Pagán et al., 2008). C-shape movements in planarians have also
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been described as “seizure-like activity” based on evidence that
proconvulsants induce C-shape movements that are prevented by
concurrent exposure to antiepileptic agents (Ramakrishnan and
Desaer, 2011; Raffa et al., 2010). Furthermore, planarians exposed
to cholinergic agonists exhibit muscle contractions resembling C-
shape movements (Nishimura et al., 2010; Rawls et al., 2011;
Owaisat et al., 2012). Given that seizure-like activity has been re-
ported in mice following administration of higher doses of levam-
isole (Rehni and Singh, 2010), and that levamisole activates
nicotinic acetylcholine receptors involved in seizures (Levandoski
et al., 2003), it cannot be discounted that a proconvulsant action
of levamisole was partly responsible for producing the C-shape
movements in planarians.

The effectiveness of cocaine in planarian motor and CPP as-
says varied with concentration; lower concentrations produced
the greatest preference shifts whereas 1000-fold higher con-
centrations were required to elicit stereotyped movements.
Similar dose-related trends have been observed in corresponding
rat assays and suggest that the rewarding and aversive effects of
cocaine are separable by dose. For example, in rat CPP studies,
cocaine displays an inverted U-shaped dose response in which
the highest doses (e.g. 30 mg/kg) produced diminished responses
due to their aversive effects (Bardo et al., 1995; Tzschentke, 2007;
Zakharova et al., 2009). Doses of cocaine at the high end of the
inverted U-shaped curve also produce more robust stereotypical
activity (Estevez et al., 1979; Bhattacharyya and Pradhan, 1979)
and, at even higher doses, eventually seizure (Zagnoni and
Albano, 2002). Our results with planarians suggest a similar
phenomenon for cocaine in which its rewarding effects are more
robust at lower concentrations that do not elicit significant in-
creases in stereotypical activity.

Levamisole enhanced CPP produced by submaximal concen-
trations of cocaine but did not alter preference shifts produced by
higher, and more effective, concentrations of cocaine. Levamisole’s
preferential effect on submaximal concentrations of cocaine may
be related to the magnitude of the preference shift produced by
cocaine itself. For instance, the more effective concentrations of
cocaine are likely to be associated with a ‘ceiling effect’, a phe-
nomenon in which a drug produces a maximum effect so that
increasing the drug dosage or, as in the present case, adding
another type of drug does not increase overall efficacy (Lutfy and
Cowan, 2004; Tallarida, 2012). Indeed, when cocaine was admin-
istered to planarians by itself, the maximal preference shift was
about 100 s. For combinations of cocaine and levamisole, the
maximal preference shift detected was about 125 s. The relative
similarity in magnitude of those preference shifts, coupled with the
inverted U-shaped dose response curve of cocaine by itself, sup-
ports the interpretation that levamisole synergism with cocaine is
more likely to be detected at submaximal concentrations of
cocaine.

A comment is perhaps warranted on a liability of the
planarian assay, which is the challenge of quantifying changes in
motility following acute exposure to stimulant drugs. Planarians
display slight to modest increases in motility immediately
following exposure to concentrations of amphetamine and
nicotine in the lower portion of their concentration curves (Raffa
and Martley, 2005). However, acute exposure to modest to higher
concentrations decreases motility (Pagán et al., 2009; Rawls
et al., 2011).

In conclusion, we provide the first evidence that levamisole
enhances cocaine’s action in vivo. Most important is the identifi-
cation of levamisole synergismwith cocaine, which was detected in
two different assays, including CPP, in which the environmental
preference for cocaine was augmented by the presence of levami-
sole. The synergism between cocaine and levamisole now requires
further, and more detailed, investigation in mammalian models of
CPP and self-administration to determine if levamisole affects the
positive reinforcing and drug seeking properties of cocaine.
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