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Recent data suggest that opioid receptors are involved in the development of nicotine physical dependence
in mammals. Evidence in support of a similar involvement in an invertebrate (Planaria) is presented using
the selective opioid receptor antagonist naloxone, and the more receptor subtype-selective antagonists CTAP
(D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH,) (i, MOR), naltrindole (6, DOR), and nor-BNI (norbinaltorphimine)
(i, KOR). Induction of physical dependence was achieved by 60-min pre-exposure of planarians to nicotine and
was quantified by abstinence-induced withdrawal (reduction in spontaneous locomotor activity). Known MOR
and DOR subtype-selective opioid receptor antagonists attenuated the withdrawal, as did the non-selective
antagonist naloxone, but a KOR subtype-selective antagonist did not. An involvement of MOR and DOR, but
not KOR, in the development of nicotine physical dependence or in abstinence-induced withdrawal was thus
demonstrated in a sensitive and facile invertebrate model.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The abuse of nicotine (continued use despite negative health con-
sequences) is a multifaceted phenomenon involving several neuro-
transmitter systems. Proximal mediation of nicotine-induced effects
occurs via the activation of ligand-gated nAChRs (nicotinic acetylcho-
line receptors) —- primarily homomeric o; and heteromeric oy,
subtypes (Millar and Gotti, 2009). Distal (behavioral) effects are
mediated via downstream receptors for several neurotransmitters,
such as catecholamines (e.g, norepinephrine and dopamine), 5-HT
(5-hydroxytryptamine, serotonin), GABA (<y-aminobutyric acid), glu-
tamate, cannabinoids, hypothalamic hypocretin peptides, and endog-
enous opioids (Clarke and Reuben, 1996; De Vries and Schoffelmeer,
2005; Di Matteo et al,, 1999; Fu et al., 2000; Hollander et al., 2008;
Isola et al,, 2009; Liechti and Markou, 2008; Maldonado et al,, 2006;
Marty et al,, 1985; McGehee et al.,, 1995; Pontieri et al, 1996; Scherma
et al, 2008; Wilkie et al., 1993; Yang et al., 1996).

A recent review of neurobiological mechanisms underlying nicotine
dependence places particular emphasis on the endogenous opioid sys-
tem (Berrendero et al., 2010). Evidence that this system has an impor-
tant role in nicotine abuse includes: nicotine stimulates the release of
endogenous opioid peptides, alters the expression of endogenous opi-
oid peptides, and induces the dopamine release in nucleus accumbens,
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which is attenuated by opioid antagonists and in B-endorphin or en-
kephalin knockout mice (Berrendero et al., 2005; Britt and McGehee,
2008; Dhatt et al., 1995; Goktalay et al., 2006; Maisonneuve and Glick,
1999; Tanda and Di Chiara, 1998; Trigo et al., 2009). Of the opioid-
receptor subtypes pL (MOR), & (DOR), and k (KOR), the p-subtype has
been most closely associated with nicotine-induced effects (reviewed
in (Berrendero et al.,, 2010)). The involvement of - and 6-subtypes is
less clear (Berrendero et al., 2010; Hahn et al., 2000; Heidbreder et al.,
1996). Nicotine activates p-opioid receptors in human anterior cingulate
cortex (Scott et al., 2007), and smoking initiation, reward, and depen-
dence have been linked to p-opioid receptor polymorphisms (Perkins
et al., 2008; Zhang et al., 2006). Studies in vertebrates (e.g, (Balerio
et al., 2004; Biala et al., 2005; Goktalay et al., 2006; Ise et al., 2000;
Malin et al,, 1993)), including knockout animals (Berrendero et al.,
2002, 2005; Galeote et al, 2009; Trigo et al, 2009), suggest that
abstinence-induced withdrawal from nicotine involves opioid receptors
and that changes in locomotor activity are a manifestation of nicotine-
induced modulation of opioid and other neurotransmitter systems re-
lated to nicotine physical dependence (Decker et al., 1995).

Although models of nicotine physical dependence and withdrawal
in vertebrates are available (as reviewed in (Berrendero et al., 2010)),
they are relatively effort- and time-intensive and they often require
antagonists to precipitate quantifiable withdrawal. A simpler in vivo
model would be advantageous. Following several pioneering contri-
butions that paved the way to the recognition of planarians as a suit-
able animal in different experimental conditions (e.g., (Carolei et al,
1975; Venturini et al.,, 1981, 1983)), we have shown that planarians
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offer a simple model to study neurotransmitter processes related to
drug use and abuse, including development of physical dependence
and abstinence-induced or antagonist-induced withdrawal (reviewed
in monograph (Raffa and Rawls, 2008)). We recently published the
use of this model to study nicotine pharmacology (Rawls et al.,
2011), including abstinence-induced nicotine withdrawal. Planarians
have been established as a model to study opioid behavior pharma-
cology (Raffa and Rawls, 2008). We now describe the use of this
model to study the involvement of opioid-receptor subtypes in the
development of nicotine physical dependence and abstinence-induced
withdrawal.

2. Methods
2.1. Subjects and compounds

Planarians (Dugesia dorotocephala) were purchased from Carolina
Biological Supply (Burlington, NC, USA) and were tested on the same
day or the day following receipt. Nicotine, mecamylamine, scopolamine,
naloxone, CTAP, naltrindole, and nor-BNI were purchased from Sigma-
Aldrich Corp. (St. Louis, MO). Solutions were prepared daily in
water (1 ml Amquel® per 1 gal water). All of the experiments were
conducted using plastic Petri dishes that contained water or test
compound(s) under standard laboratory conditions. Each of the ex-
periments used independent groups of planarians and each planarian
was used only once.

2.2. Behavioral experiments

Individual planarians (n = 5-13 per group) were pretreated in nico-
tine (100 pM), nicotine (100 uM) plus antagonist (scopolamine, 10 pM;
mecamylamine, 50 uM; naloxone, 10 uM; CTAP, 10 pM; naltrindole,
10 uM; nor-BNI, 10 uM), previously shown to antagonize an agonist in
this preparation, or water for 60 min. They were then placed individually
into a Petri dish containing nicotine (100 uM), antagonist (the same
concentration as used in pretreatment phase) or water for 5 min, and
spontaneous locomotor velocity (pLMV) was quantified as the number
of gridlines (0.5 cm apart) crossed or re-crossed over the five-minute
observation interval (Raffa and Valdez, 2001).

2.3. Data analysis

Comparisons of group means + the standard error of the mean
(S.E.) were first evaluated by two-way ANOVA and then, if appropriate,
by post-hoc analysis. Slopes were calculated using linear regression
analysis [with 95% confidence limits]. In all cases, a value of P < 0.05
was considered statistically significant.

3. Results
3.1. Abstinence-induced nicotine withdrawal

Consistent with several previous reports (for example, (Raffa et al.,
2001, 2003; Raffa and Valdez, 2001)), drug-naive planarians displayed
nearly constant (linear) pLMV of about 13-16 gridlines per minute
when they were tested in water and nicotine-exposed planarians
displayed an abstinence-induced withdrawal (i.e., a significant reduction
in pLMV when they were tested in water (slope = 16.69[16.34-17.03]),
but not when they were tested in the same concentration of nicotine
(100 M) (slope = 12.09 [10.62-13.55]) (P < 0.05) (Fig. 1)).

3.2. Nicotinic vs muscarinic AChRs
Co-incubation of planarians for 60 min with nicotine (100 uM) with

the nicotinic AChR antagonist mecamylamine (50 uM) (slope = 9.50
[9.09-9.91]), which had no effect of its own, significantly (P < 0.05)
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Fig. 1. Spontaneous planarian locomotor velocity (pLMV) measured as the mean number
of gridlines crossed (4 S.E.) during a 5-min observation period. Planarians were pretreated
either in water (w) or nicotine (Nic, 100 uM) then tested either in water or nicotine at
the same concentration used during the pretreatment. Nicotine-naive animals displayed
no difference in pLMV when tested in water or nicotine. Nicotine-pretreated animals
displayed no difference pLMV from nicotine-naive animals when tested in nicotine.
However, planarians pretreated in nicotine for 60 min and then tested in water displayed
significantly reduced pLMV. *P < 0.05 compared to w/w.

reduced nicotine abstinence-induced withdrawal (slope = 15.13
[13.76-16.49]) (Fig. 2). Importantly, these planarians still displayed
a linear pLMV over the five-min observation period. They resume nor-
mal pLMV after a short recovery period (Raffa and Rawls, 2008). Possi-
ble confounding interpretations, such as change in pH, osmolarity,
etc., were eliminated in previous studies (Raffa and Valdez, 2001).

In contrast to the nicotinic AChR antagonist, co-incubation with
the muscarinic AChR antagonist scopolamine (10 uM) had no effect
(P> 0.05) on subsequent abstinence-induced nicotine withdrawal
(Fig. 3).
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Fig. 2. Abstinence-induced nicotine (Nic) withdrawal in water (w) was attenuated when
the planarians were coincubated with 50 M mecamylamine (Nic + Mec/w) for 60 min
and then tested in water. *P < 0.05 compared to w/w.
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Fig. 3. Planarians pretreated in water (w), nicotine (Nic, 100 uM), scopolamine (Scop,
10 pM), or nicotine (100 uM) plus scopolamine (10 uM) (Nic + Scop) were tested either
in water or nicotine at the concentration during pretreatment. Abstinence-induced nico-
tine withdrawal (Nic/w vs Nic/Nic) was unaffected by the muscarinic AChR antagonist
scopolamine. ***P < 0.001 compared to w/w.

3.3. Opioid receptors

The pLMV of planarians co-administered nicotine and naloxone
(at a dose that had no effect of its own on pLMV) (slope = 15.53
[14.91-16.14]) significantly (P < 0.05) reduced nicotine withdrawal
(slope = 11.11 [10.82-11.35]); not significantly different (P> 0.05)
than the pLMV of planarians pretreated and tested in water (Fig. 4a).

3.4. Opioid receptor subtypes

Co-incubation of planarians for 60 min with nicotine (100 M) and
the selective MOR antagonist CTAP (10 uM) (slope = 16.16 [15.36-
16.96]) reduced significantly (P < 0.05) nicotine abstinence-induced
withdrawal (slope = 13.89 [13.30-14.47]). Likewise, co-incubation of
planarians for 60 min with nicotine (100 uM) together with the selective
DOR antagonist naltrindole (10 pM) (slope = 13.86 [13.16-14.56]) sig-
nificantly reduced (P < 0.05) nicotine abstinence-induced withdrawal
(slope = 10.64 [9.73-11.56]). In contrast, pLMV of planarians that
were co-administered nicotine (100 pM) and the selective KOR an-
tagonist nor-BNI (slope = 12.31 [11.78-12.85]) was not significantly
different (P > 0.05) than the pLMV of planarians pretreated with nicotine
(100 uM) and tested in water (slope = 11.87[11.34-12.40]) (Fig.4b,c,d).
The antagonists had no effect of their own on pLMV (Table 1).

4. Discussion

The endogenous opioid pathway is involved in nicotine rewarding
effects and the development of nicotine physical dependence, as sum-
marized in a recent review (Berrendero et al., 2010). The reinforcement
properties (which are inferred from self-administration) of nicotine in
rats are mediated at least in part through opioid receptor subtypes
(Liu and Jernigan, 2011). Anatomical and physiological interactions
between the nAChR that mediate nicotine's in vivo effects and the
endogenous opioid systems (opioid receptors) are well established
(e.g., (Berrendero et al., 2005; Britt and McGehee, 2008; Maisonneuve
and Glick, 1999; Tanda and Di Chiara, 1998)) and positron emission
tomography imaging (PET scan) in humans has shown that nicotine
activates MOR located in anterior cingulate cortex (Scott et al., 2007).

Although evidence from animal models and clinical trials has been
equivocal regarding efficacy of the opioid antagonist naloxone or the
longer-acting naltrexone (Byars et al., 2005; Corrigall and Coen, 1991;
Covey et al., 1999; DeNoble and Mele, 2006; Epstein and King, 2004;
Gorelick et al., 1988; Hutchison et al., 1999; Ismayilova and Shoaib,
2010; Karras and Kane, 1980; King et al., 2006; King and Meyer, 2000;
Krishnan-Sarin et al,, 1999, 2003; Liu et al., 2009; Nemeth-Coslett and
Griffiths, 1986; Ray et al., 2006, 2007; Rohsenow et al., 2007; Rukstalis
et al,, 2005; Sutherland et al., 1995; Wewers et al., 1998; Wong et al.,
1999), antagonist therapy might be effective in sub-populations of
smokers, particularly those who have higher rates of depressive symp-
toms (Walsh et al., 2008).

A recent study reported the contribution of opioid-receptor subtypes
to nicotine behavioral effects in rats (Liu and Jernigan, 2011). The au-
thors propose that such information can help guide drug-discovery
efforts related to amelioration or treatment of nicotine abuse. Since
studies in rodents involve methodological complexities and are time-
and resource-intensive, a simpler, more rapid, and mammalian-sparing
model would be of complementary value. We have shown that pla-
narians provide a convenient model for a wide variety of phenomena
related to drug use and drug-abuse, including physical dependence
and withdrawal (Raffa and Rawls, 2008).

Prior work by others (Pagan et al., 2009) has shown that planarians
display abstinence-induced withdrawal subsequent to the discontinua-
tion of nicotine exposure. In Pagan et al. (2009), abstinence-induced
withdrawal was assessed by observing withdrawal signs (Raffa and
Desai, 2005). In Rawls et al. (2011), withdrawal was assessed using
decreased spontaneous motility, an endpoint used to quantify planarian
withdrawal from cocaine, amphetamines, benzodiazepines, and opioids
(e.g., (Raffa and Valdez, 2001; Rawls et al., 2007, 2009)). We used this
methodology in the present study, since decreased locomotor activity
is a withdrawal sign in planarians (Raffa and Desai, 2005). Abstinence-
induced withdrawal signs can be difficult to quantify in mammals, al-
though a well-documented withdrawal syndrome comprised of somatic
effects (e.g, forelimb tremor, head twitches, jumping, and piloerection)
and affective signs (e.g., anhedonia) is precipitated by administration
of cholinergic antagonists to nicotine-dependent rats (Kenny and
Markou, 2001; Malin, 2001). An attractive feature of the planarian
model is that the physical dependence development is rapid (under
60 min), robust, and easily quantified. An as yet unexplored possibility
is that the reduced locomotor activity reflects a state similar to the
immobility displayed by nicotine-withdrawn rats in the forced swim
test (Chae et al., 2008).

Nicotine physical dependence involves overlapping stages of devel-
opment, expression, and maintenance that may be sensitive to changes
in opioid-mediated transmission (Hadjiconstantinou and Neff, 2011).
Our study was aimed at the development stage, as planarians were con-
currently exposed to nicotine and opioid receptor antagonists and then
withdrawn and placed into drug-free environment for behavioral analy-
sis. We found that antagonism of MOR and DOR during the development
of nicotine physical dependence attenuates subsequent abstinence-
induced withdrawal in planarians. Limited knowledge about the phar-
macological effects of nicotine in planarians (Pagan et al., 2013; Rawls
et al,, 2011), especially as related to its interaction with endogenous
opioids and opioid receptors, precludes extensive speculation about spe-
cific mechanisms; however, a link between the nicotine abstinence syn-
drome and endogenous opioid system has already been demonstrated
for rats and mice, (Biala et al., 2005; Malin et al., 2006). The evidence
that morphine reverses withdrawal signs in rats in abstinence-induced
nicotine withdrawal and nicotine reduces naloxone-precipitated mor-
phine withdrawal signs suggests that common neurobiological mecha-
nisms underlie nicotine and opioid withdrawal (Malin et al, 1993;
Zarrindast and Farzin, 1996). Further, the abstinence syndrome in
nicotine-dependent rats is more severe following naloxone-precipitated
withdrawal than after abstinence-induced withdrawal (Malin et al.,
1993, 2006). Although exacerbated abstinence syndrome induced by
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Fig. 4. Abstinence-induced nicotine (Nic) withdrawal in water (
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w) was attenuated by the opioid receptor antagonist naloxone (Nx) (a) and by the subtype-selective p- (b) and 6- (c) opioid

receptor antagonists CTAP and naltrindole (Nt), respectively, but not by the k-opioid receptor antagonist nor-BNI (nor) (d). *P < 0.05 compared to w/w.

opioid receptor antagonism in nicotine-dependent rats was not observed
in planarians, the difference is likely due to the timing of naloxone expo-
sure. Naloxone was administered after physical dependence had already
developed in rats, but was administered simultaneously with nicotine
during the development of physical dependence (Malin et al., 1993) in
our study.

Taken together, the most parsimonious explanation for our results is
that nicotine produces an enhancement in the activity of the MOR and
DOR systems that contribute to the normal development of physical
dependence, conceivably by increasing the synthesis of opioid peptides
such as B-endorphin and Met-enkephalin (Conte-Devolx et al., 1981;

Table 1
Control experiments. The antagonists had no effect of their own on pLMV (5-min
cumulative mean + S.E.). N = 7-13 planarians per group.

Pretreat Test pLMV P

Water Water 73 £3 >0.05
Naloxone Water 85+ 3 >0.05
Naltrindole Water 79 £ 2 >0.05
nor-BNI Water 87+ 3 >0.05
CTAP Water 83+ 4 >0.05

Hadjiconstantinou and Neff, 2011; Hexum and Russett, 1987; Marty
et al.,, 1985; Pierzchala et al,, 1987; Pomerleau, 1998). When an opioid
antagonist is administered during nicotine exposure, the conjectured
increase in opioid peptide synthesis would still occur, but ensuing down-
stream activation of opioid receptor subtypes would be prevented, thus
leading to a subsequent reduction in withdrawal response on discontin-
uation of nicotine exposure. Another possibility is that its inhibition of
nicotine physical dependence in planarians is related to antagonism of
nicotine acetylcholine receptors (nAChRs), since naloxone and naltrex-
one have been shown to bind to nAChRs (Almeida et al., 2000; Tomé
et al.,, 2001).

It is interesting to note that the KOR antagonist did not affect the de-
velopment of nicotine physical dependence in planarians, indicating
that the effect was subtype-selective for MOR and DOR. This is consis-
tent with recent data showing that chronic nicotine exposure of rats
upregulates five enkephalin opioid peptides in the striatum without
producing any change in dynorphin synthesis (Petruzziello et al.,
2013). Enkephalins and dynorphins exert opposing actions on dopamine
neurons (increasing and decreasing dopamine release respectively) and
are components of circuits promoting positive or negative motivational
and affective states (Smith et al., 2012).
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The present results do not address the mechanism of dependence
development or withdrawal. In rodents, nicotine increases synthesis
and release of endogenous opioid peptides in nucleus accumbens by
activation of dopamine and glutamate receptor-mediated pathways.
After acute administration of nicotine, the peptides influence the release
of dopamine and modulate locomotor activity, which is increased by
enkephalins and endorphins and decreased by dynorphins. During
nicotine withdrawal in rodents, spontaneous locomotor activity is
decreased and somatic signs of physical dependence are increased.
The decrease in locomotor activity is thought to result from suppressed
dopamine and enhanced dynorphin release in nucleus accumbens. Such
information is not yet known for planarians and was beyond the scope
of the present study. Nonetheless, when opioid receptor block was pro-
duced in planarians that were withdrawn from nicotine and already
physically dependent, an enhancement of the withdrawal response
occurred, similar to that observed in rats and mice (Biala et al., 2005;
Malin et al., 1993), perhaps due to suppression of compensatory MOR
or DOR systems that are normally activated to offset aversive effects
associated with nicotine abstinence. Future studies using planarian
models will investigate the effects of subtype-selective opioid receptor
antagonists on the expression and maintenance of nicotine physical de-
pendence and the rewarding properties of nicotine using conditioned
place preference (Ramoz et al., 2012; Rawls et al., 2011).

Previous findings in rats (Liu and Jernigan, 2011) evaluated the
effects of opioid receptor antagonists in the reinforcing effects of nico-
tine using a model of nicotine self-administration. The present study
suggests the involvement of MOR- and DOR-, but not KOR-opioid recep-
tor subtypes in the development of nicotine physical dependence or
abstinence-induced withdrawal in an invertebrate model.
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